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PRECONDITIONERS FOR VARIABLE-COEFFICIENT FINITE-VOLUME STOKES
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Abstract. We develop several robust preconditioners for solving the saddle-point linear systems that arise upen-
spatial discretization of unsteady and steady variable-coefficient Stokes equations on a uniform staggered grid. Building
on the success of using the classical projection method as a preconditioner for the coupled velocity-pressure system [B.
Griffith, J. Comp. Phys., 228 (2009), pp. 7565-7595|, as well as established techniques for steady Stokes flow in the
finite-element literature, we construct preconditioners that employ separate Helmholtz or Poisson solvers for the pressure
and the velocity subproblems. We find that a single cycle of a standard geometric multigrid can be used as inexact”
solvers for these subproblems. Contrary to traditional wisdom, we find that the overall cost of solving the Stokes system
is comparable to the cost of classical projection or fractional step methods for incompressible flow, even for steady
flow and in the presence of large density and viscosity contrast. Two of the five preconditioners considered here are
found to be robust to GMRES restarts and to increasing problem size, making them suitable for large-scale problems.
Our work opens many possibilities for constructing novel unsplit iimplicit temporal integrators for finite-volume Spatiaﬂ
discretizations of low Mach and incompressible flow problems.

Keywords Stokes flow; variable density; variable viscosity; saddle point problems; projection
method; preconditioning; GMRES.

1. Introduction. Many numerical methods for solving the time-dependent (unsteady) incom-
pressible [3, 2, 18, 16] or low Mach number [33, 10] equations require the solution of a linear unsteady
Stokes flow subproblem. The linear steady Stokes problem is of particular interest for low Reynolds
1@% In this work, we develop efficient linear solvers for the unsteady and steady

Stokes cquationisinthc presence of variable density and viscosity. Specifically, we consider the coupled
velocity-pressure Stokes system [39, 15]

— V' W
(1.1) { @Lj—vg Vr(u)+ f, Py~ \r,u..>b_

Drld s
where p (r,t) is the (potentially variable) density, w (7, t) is the velocity, p(r,t) is the pressure, f (r,t)
is a force density, and 7(u) is the viscous stress tensor. A nonzero velocity-divergence g (r,t) arises,
for example, in low Mach number models because of compositional or temperature variations [33].
The viscous stress 7(u) is ¢Vu for constant viscosity incompressible flow, 1 [Vu + (Vu)?] when
g = 0 (incompressible flow), and p [Vu + (Vu)'| + (v - 21)(V - uw)I when g # 0, where p(r,t) is
the (potentially variable) shear viscosity and ~y (r,t) is the (potentially variable) bulk viscosity. When
the inertial term is neglected, pu; = 0, (1.1) is reduced to the time-independent (steady-state) Stokes
equations. In this work we consider periodic boundary conditions and physical boundary conditions
that involve velocity only, notably no-slip and free-slip physical boundaries.

Spatial discretization of (1.1) can be carried out using standard finite-volume or finite-element
techniques. Applying the backward Euler scheme to solve the spatially-discretized equations with
time step size At, gives the following discrete system for the velocity u"™! and the pressure p"*! at
the end of time step n,

n+1

) 4 Vpn,+1 =V T (un+1) 4 fn+17

(12) n+1 n+1
V u = g,

where f"*t! contains external forcing terms such as gravity and any explicitly-handled terms such
as, for example, advection. Similar linear systems are obtained with other implicit and semi-implicit
temporal discretizations [3, 2, 18]. In the limit p/At — 0, the system (1.2) reduces to the steady Stokes
equations. Here we will assume that the spatial discretization is stable, more precisely, that the Stokes
system (1.2) is “uniformly” solvable as the spatial discretization becomes finer. This means that a
suitable measure of the conditioning number of (1.2) remains bounded as the grid spacing h — 0. In
the context of finite-element methods, this is equivalent to the well-known inf —sup or Ladyzenskaja-
Babugka-Brezzi (LBB) condition. Here we employ the classical staggered-grid (23| discretization on a
uniform grid, which is known to be a stable discretization [38, 31]. We expect that the preconditioners
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developed here can be relatively straightforwardly generalized to other stable spatial discretizations,
such as finite-element techniques [39, 15] or recently-developed adaptive mesh staggered schemes
[19, 17]. Note, however, that collocated finite-volume discretizations of the Navier-Stokes equations
do not provide a stable discretization, motivating the development of approximate-projection methods
[1]. CNA—

There }é significant differences in the treatment of (1.2) in the finite-volume and finite-element
literature. In the finite-element literature, there is a long history of numerical methods for solving
the Stokes equations, especially in the time-independent (steady) context [39, 15]. By contrast, in the
context of high-resolution finite-volume methods, the dominant paradigm has been to use a splitting
(fractional-step) or projection method [9, 7] to separate the pressure and velocity updates. In part,
this choice has been motivated by the target applications, which are often high Reynolds number, or
even inviscid flows. In the inviscid limit, the splitting error vanishes, and for sufficiently large Reynolds
number flows the time step size dictated by advective stability constraints makes the splitting error
relatively small. At the same time, the preference for splitting methods stems, in large part, from
the perception that solving the saddle-point problem (1.2) is much more difficult than solving the
pressure and velocity subproblems; to quote the authors of Ref. |7], “Spatially discretized versions
of the coupled Egs. ... are cumbersome to solve directly.” In fact, one of the first second-order
projection methods [3] was developed by starting with a Crank-Nicolson variant of (1.2) and then
trying to approximate it using pressure-velocity splitting due to the perceived difficulty in solving the
coupled system.

Fractional-step approaches, however, suffer from several significant shortcomings. It is well-known,
for example, that the splitting introduces a commutator error that leads to the appearance of “spurious”
or “parasitic” modes [11, 7] in the presence of physical boundaries. Furthermore, the imposition of
boundary conditions that couple pressure and velocity is difficult and requires the creation of artificial
intermediate boundary conditions. Lastly, the splitting error becomes larger as viscous effects become
more dominant, and projection methods do not apply in the steady Stokes regime. Recognizing
these problems, one of us investigated the use of projection-like methods as preconditioners for a
Krylov method for solving the coupled system (1.2) [18]. It was found that, contrary to traditional
wisdom, the saddle-point problem (1.2) can be efficiently solved using standard multigrid techniques
for the velocity and pressure subproblems, for a broad range of parameters. Here we improve and
generalize the preconditioners developed in Ref. [18] to account for variable density and variable
viscosity, as well as to robustly handle very small or zero (steady) Reynolds number flows. We also
investigate several alternative preconditioners that solve the velocity and pressure subproblems in
different orders. Several of these/methods have already been proposed and studied in the finite-
element literature [4, 5, 14, 15, 13, 7, 24, 25, 26, 27, 28, 30, 29, 39]. However, most works are aimed
at solving constant density and c ant viscosity problems, or are restricted to the steady case. We
wil attempt to review the extensive finite-clement literature on preconditioners for Stokes flow
instead, we will point out the similarities and differences with prior work for each of the
ditioners that we study. In the finite-volume context, the work most closely related to our work
is Ref. [16], which focuses on steady Stokes flow in the presence of large viscosity contrast (jumps)
for geodynamic applications. Notably, both our work and the work presented in Ref. [16] are based
on a staggered finite-volume fluid solver and geometric multigrid solvers.

The preconditioners that we investigate are built using two crucial subsolvers. The first of these
is a linear solver for the inviscid problem '

(1.3)

0 (un+A1_uu) + Vpn.+1 == f”+l,
t
o 1
V . un+ = gn+ ,

the solution of which requires solving a density-weighted pressure Poisson equation
—V . (p—lvpll+1) — gn,+1 _ V . (un+1 EB p—lfn.+1At) .

For the staggered-grid finite-volume discretization we employ here, this Poisson problem can efficiently
be solved using standard geometric multigrid techniques [2]. The second subsolver required by the
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preconditioners is a linear solver for the unconstrained variable-coefficient velocity equation,

n+l __ .m
(1.4) p <%) = V7 (ut) 4 L

Note that both (1.3) or (1.4) use the same boundary conditions for velocity as the coupled problem,
and that no boundary conditions are required for the pressure when solving (1.3) on a staggered
grid. For constant viscosity incompressible flow V - 7 (u) = V2w and therefore (1.4) is a system
of d uncoupled Helmholtz equations, where d is the dimensionality. These can be solved efficiently
using standard geometric multigrid techniques. For variable viscosity flows the different components
of velocity are coupled. Here we develop an effective geometric multigrid method for solving (1.4)
based on the classical red-black coloring smoother for the scalar Poisson equation. Since the solution
of either (1.3) or (1.4) is itself a costly iterative process, it is crucial that the preconditioners require
only approximate subsolvers. More precisely, preconditioning should only require the application of
linear operators that are spectrally-equivalent [15] to the exact solution operators for (1.3) or (1.4).
Here we use one or a few cycles of geometric multigrid as approximate subsolvers.

Our goal will be to optimize the various parameters and thus give specific prescriptions that
practitioners can use with minimal effort. More importantly, we will strive to construct solvers for
the Stokes system that are (nearly) as computationally cfficient as traditional fractional step or split
methods, and use traditional building blocks available in many existing codes. We will also aim to
construct preconditioners that can easily be generalized to other situations and spatial discretizations
by simply constructing approximate solvers for (1.3) and (1.4). For example, boundary conditions
that couple pressure and viscous stress can be handled by imposing approximate boundary conditions
for the subsolvers. In Ref. [18], at physical boundaries on which prescribed normal tractions (normal
components of the stress tensor) are imposed, Neumann conditions are imposed on the normal velocity
component when solving (1.4) and Dirichlet conditions are imposed for the pressure when solving (1.3).
For adaptively-refined meshes [19, 17|, multilevel geometric multigrid techniques can be used to solve
the pressure and velocity subproblems [2, 19].

The organization of this paper is as follows. In section 2, we introduce several preconditioners
based on approximating the inverse of the Schur complement. At first we keep the presentation
rather general in order to facilitate future generalizations, and then in Section 3 we specialize to a
particular staggered-grid second-order finite-volume discretization and give details of our nmunerical
implementation. In Section 4 we perform a detailed study of the efficiency and robustness of the
various preconditioners, and select the optimal values for several algorithmic parameters. Finally,
we offer some conclusions in Section 5, and then give several technical derivations in an extensive
Appendix.

2. Preconditioners. In this section we construct several preconditioners for solving the saddle-
point linear system (1.2) that arises after spatio-temporal discretization of (1.1). For increased gen-
erality, we write this system in the form,

Ty A G By by,

2 w(%)-(5 9)(5)- (%)
where (24, ;)7 denote the velocity and pressure degrees of freedom, (b, b,)T are the velocity and
pressure right hand sides, D denotes a discrete divergence operator, and G is a discrete gradient
operator. Note that for the staggered-grid discretization that we describe in Section 3, the gradient
and divergence operators@or periodic or no-slip boundary conditions, G = (—D)*, where
star denotes adjoint, making M = M™* a self-adjoint matrix. Here the linear velocity operator
A = 0p — L, combines inertial and viscous effects, where ¢ is a parameter that is zero for s
Stokes flow, and 6§ ~ At~! for unsteady flow. The operator’p is a density (mass) matrixpSuch that
pPT, is a spatially-discrete (conserved) momentum field. The viscous operator is denoted with L,
with L,u being a spatial discretization of V - 7(u).

The saddle-point problem (2.1) can formally be solved by using the inverse of the Schur comple-
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ment,

s-'=(-DA™'G)7,

to obtain the exact solution for the pressure,

22 x, =S Y (DA b, +b,),

and for the velocity degrees of freedom,

(2.3) T, = A7Y(b, — Gz,) = A7 b, + AT'GS™Y(DA b, +b,).

These formal solutions are not useful in practice because the Schur complement cannot even be
formed explicitly for large three-dimensional grids, yet alone inverted efficiently. In Ref. [16], the
authors investigate evaluating the action of S~! in (2.2) by an outer Krylov solver, which itself
relies on evaluating the action of A~! in an inner (nested) Krylov solver. We do not investigate this
approach here and instead focus on what the authors of Ref. [16] call the “fully coupled preconditioned
approach”, in which an approximation of the Schur complement solution is used to construct an
effective preconditioner for a Krylov solver applied to the saddle-point problem (2.1). The key part in
\( designing preconditioners for (2.1) is approximating the (inverse of the) Schur complement, specifically,

/:’onstructmg an operat hat is spectrally-equivalent to S~! [14].
e approximation of S§~! used in Ref. [18], let us consider the case of

In order to motiva
Of/ . constant viscosity g and constant density pg. In this case A = 0pol — pL, where I denotes an
identity matrix of the appropriate size and L is a discrete vector Laplacian operator, constructed
taking into account the imposed velocity boundary conditions. We then have

X,\,W(M §-1 [~D(9p0I—p0L)_lG]

where L, = DG denotes a scalar (pressure) discrete Laplacian operator, and have assumed the
commuting property LG =~ GL,, which is an exact identity for the staggered grid discretization for"
periodic systems.

Here we generalize (2.4) to variable density and viscosity through a simple construction. The
basic idea is that the first part of the Schur complement applOXlIHdthII GpoL , corresponds to the
inviscid limit. For variable density, this term should become 6L, 1. where

oby sy Mo

)

is a discretization of the density-weighted Poisson operator V - p~!V that also appears in traditional
variable-density projection methods [2]. Therefore, for variable-density constant-viscosity flow, V.7 =
1o V2u, we employ the approximation [18]

-1 -1
- [(—DG) (Opol — [LQLI,)_l] — —OpoL;" + pol

L,=Dp 'G

(2.5) S 18 tl= —HL;I + pol.

The term gl in (2.4) is an analogue of the viscous operator L,, that acts not on velocity degrees
of freedom but rather on pressure degrees of freedom. This has to be constructed on a case-by-case
basis, and in the constant viscosity setting it corresponds to the viscous pressure-correction term
proposed by Brown, Cortez and Minion [7] in the context of second-order projection methods. For
incompressible flow, 7(u) = p [Vu + (Vu)T], the Fourier-space calculation described in Appendix A
suggests replacing the term jioI with 2u, where p a diagonal matrix of viscosities corresponding to
each pressure degree of freedom [Donev: In the more general setting, perhaps some weighting
will be needed for the viscosities?]. This gives the Schur complement inverse approximation

-1 . o1 _ =i
(2.6) S~ 8 = —6L;! + 2,

which is called the “local viscosity” preconditioner in Ref. [16]. Note however that the prefactor of
two in front of the viscosity matrix is not included in Eq. (36) in Ref. [16], as suggested by our
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analysis of the constant-viscosity problem in Appendix A. When bulk viscosity is included, 7(u) =
1 [Vu+ (Vu)T] + (v = 3u(V - uw))1, we take

4
(2.7) S‘lzslz—ﬁLp1+<’y+§u>,

where 7 is the diagonal matrix of bulk viscosities. As we demonstrate in Appendix A, these approxi-
mations are exact for periodic systems if the density and viscosity are constant. In all other cases they
are approximations that are expected to be good in regions far from boundaries where the coefficients
do not vary significantly. Our numerical experiments support this intuition.

It is important to observe that the pressure-space viscous operator in (2.6) does not make use of
the velocity boundary conditions, unlike the velocity-space viscous operator L,,. We have investigated
the alternative approximations

851y ﬁeL;I — L;le_lLup_lGL;l,
as well as
g’ S~'~-6L;' - L;' (DL,G)L,",

which is similar to the B@Jreconditioner of Elman [14] in the steady-state case, and is also in-
vestigated in Ref. [16]. These approximations do utilize the velocity boundary conditions since they
involve the viscous operator L,. We have, however, not found the increased computational cost of
these more elaborate approximations to the Schur complement inverse to be justified in terms of the
overall performance of the Stokes solver.

2.1. Projection Preconditioner. In the first precouditioner we consider, which we wil—call”
denote with P, we use one step of the classical projection method (fractional step algorithm) [9, 3, 18]
as a preconditioner. In Py, we use (2.2) to estimate the pressure, and make a commuting assumption
in (2.3),

AIGS ' =A'G(-DA G 1 = —A‘lAp_lGL;1 = —p”G’L;l,
which gives the velocity estimate
(2.8) By A by — pflGL;I(DA“lbu +b,).

Note that this velocity estimate (2.8) satisfies the divergence condition exactly, Dz, = —b,, more
precisely, @, is the Ly projection of the unconstrained velocity estimate A~'b, onto the divergence 7
constraint. e
In practical implementation, the exact subproblem solvers need to be replaced by zlpproximat;@
subproblem-selves.  Specifically, A~! is approximated by the inexact velocity solver A ™!, L;l is
G implemer e 1nexact pressure Poisson solver E;l, and S~! is replaced by ;S'v‘l, an inexact
ver for the approximate Schur complement inverse S~! given by (2.6) for incompressible flow. In
summary, for the variable-coefficient Stokes problem, the projection preconditioner P; is defined by
the block factorization

o[ I p'GLy! I 0 Al 0
(2.9) P; _<0 Fa e ok g 7

This factorization clearly shows the three main steps in the application of the preconditioner. F irstlf, a
velocity subproblem is solved inexactly (right-most block). Second%, b. = DA'b, +b, is computed
(middle block). Thirdfy, a Poisson problem is solved approximately to compute E;lbc and, lastly, the
pressure and velocity estimates are computed (first block). For constant-coefficient periodic problems
with exact subsolvers, the projection preconditioner is an exact solver for the coupled Stokes equations
since both (2.4) and (2.8) are exact.
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For the constant viscosity and density Stokes problem, a projection preconditioner very similar to
P; was first proposed by onue of us in Ref. [18]. In this work we generalize the projection preconditioner
to the case of variable viscosity and density. Even in the constant-coefficient case, there is a small but
important difference between P; and the previous projection preconditioner in Ref. [18], which uses
the following approximation of the Schur complement inverse,

8§ & = (9ol — woLy) L7,

rather than the approximation (2.5) used here 5—1 = —onfj‘l + poI, which we have found to give
a more cffic 1ont solvm overall. The two apploxmmtlons are 1d(‘n‘r1('al when /@( exact Poisson solvers
are used, L = , but not when an approximate solver is employed.

2.2. Lower Triangular Preconditioner. For our second preconditioner, which we denote with
P, we use (2.2) for the pressure estimate, but the velocity estimate takes the simpler form

(2.10) Ly = 14“1bu7

obtained by discarding the second part in (2.3). If we fu1ther approxunate the matrix inverses with in-
exact solves, namely, replacing A~! by Al o U by L ,and S~! by S, the second preconditioner
is given by the block factorization

(.11) B-(g g ) (p 2% 1)

By combing all the terms in the right hand side of (2.11), we see that P, is actually an approxi-
mation of the inverse of the lower triangular preconditioner previously studied by several other groups
8, 24, 25, 26, 27],

o ( A o\
(2.12) P, N(—D _S) .

Notice that for steady Stokes flow, # = 0, the application of PQ"1 does not require any pressure
Poisson solvers, unlike the projection preconditioner. Therefore, a single application of P, ' can be
significantly less expensive computationally than an application of Pl_l. For unsteady flows P; and
P, involve nearly the same operations and applying them has similar computational cost.

2.3. Upper Triangular Preconditioner. Alternatively, one can assume DA~1b,, =~ 0 to ob-
tain @, = —S‘lb,, and

2y = A" (b, + GS™'b,).

Replacing the exact solvers with inexact solvers, we obtain our third preconditioner in block factor-
ization form,

(2.13) P3‘1=<g0_1 ?)(é _IG>(3 —§‘1>’

W/‘é\.)\;ﬂ is exactly the same as the “fully coupled” approach with the “local viscosity” preconditioner studied

in Ref. [16], generalized here to time-dependent problems. If we combine all the terms in the right
hand side of (2.13), then we see that Pj is actually an approximation of the inverse of the upper
triangular preconditioner (8, 24, 25, 26, 27],

A G\
-1
(2.14) P; ~< o g > .

The computational cost of applying P3'1 is very similar to that of applying PQ_I.
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2.4. Other preconditioners. In addition to the three main preconditioners (projection, lower
and upper triangular) we study here, we have investigated some other preconditioners. The simplest
Schur-complement based preconditioner one can construct is the block diagonal preconditioner [8, 25,
26, 27]

" A~ 0
(2.15) Pt= < 0 -t )

This preconditioner has the lowest computational cost of all the preconditioners but also makes the
poorest approximation to the exact solution (2.2,2.3). In the appendix, we show that P, P;, P; all
give the same spectrum for the preconditioned linear operator. It is also well-known that Py, Py, Ps,
and Py are all spectrally-equivalent if exact solvers are used [15].

As an alternative approximation to (2.2,2.3) that is more accurate than the previous approxima-
tions, we consider a fifth preconditioner, denoted by Ps. The action of the inverse of this preconditioner
1—-’5_1 cannot easily be written in block-factorization form so we present in the form of pseudo-code:

1. Solve for x;, = A-lb, using multigrid with initial guess 0.

2. Estimate pressure as x, ~ —g_l(Da:Z +b,).

3. Estimate velocity as x,, ~ fi‘l(bu — Gz,)) using a multigrid solver, starting with x}, as an

initial guess. _

If exact solvers are employed the only approximation made in Ps is the approximation S™! ~ S~1,
and as such we expect it to be the best preconditioner in terms of the spectrum of the preconditioned
operator. It is, however, also the most expensive of the five preconditioners because it involves two
applications of A~!. Our goal will be to investigate how well these preconditioners perform in practice
with inexact subsolvers.

/ 3. Numerical Implementation. In this section we specialize the relatively general precondi-

tioners from the previous section to a specific second-order conservative finite-volume discretization
of the time-dependent Stokes equations on a uniform rectangular grid. We do not discuss here the
inclusion of advection in the full Navier-Stokes equations. Schemes that handle advection explicitly
using a non-dissipative spatial discretization are described in detail in Refs. [40, 10].

3.1. Staggered-grid Discretization. For our numerical investigations of the various precon-
ditioners we employ the well-known staggered-grid or MAC discretization of the Stokes equations
[23, 22|. This is a conservative-discretization that is uniformly div-stable [38, 31]. The scheme defines
the degree of freedoms at staggered locations. Specifically, scalar variables including pressure and
density are defined at cell centers, while velocity components are defined at the corresponding faces of /
the grid. We illustrate this in two dimensions in Fig. 3.1 [Donev: I suggest deleting this figure hZ
to reduce the length since everyone reading this will know this already]; see Ref. [40] for ")\
additional details. In the figure, points marked by triangles are for the discrete velocity components @ g
v = u, and v = uy, and points marked by circles correspond to the spatial location of the discrete M
density p, the viscosity u, the bulk viscosity v and the pressure p. For illustration, we assume that the
domain (2 is rectangular and there are n, cells along the x direction and n, cells along the y direction, i
with periodic, no-slip (e.g., u = 0 along a boundary) or free-slip (e.g., v =0 and du/dy = 0 along the
south boundary) boundary conditions specified at cach of the domain boundaries. For simplicity, we

further assume that the grid spacing along the different directions is constant, h, = h, = h. beh ‘
The divergence of u = (u,v)” is approximated at cell centers by Du = D*u + DYv with L(@
U; Il {0 VAR Vi swty =V55_1p
(D*u); ;= - WE - (D¥a); » = b )

h ' h

The gradient of p is approximated at the z and y edges of the grid cells (faces in three dimensions)

by Gp = (G*p, G¥p)T with

(Gp)i-ypg = BEEEM (Gp)s oy = PP
N 1
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Fic. 3.1. A staggered-grid spatial discretization and the spatial location pf the face-centered velocity and the
cell-centered pressure degrees of freedom.

For periodic domains or when a homogeneous Dirichlet condition is/specified for the normal component
of velocity at physical boundaries, the staggered discretization fatisfies the compatibility{duality
D = —G*. Note that DG = L,, where L, is the standard 2dF T centered finite difference Laplacian.

For constant viscosity, the finite difference approximation to the vector Laplacian V2u is denoted
as Lu = (L*u, LYv). In the interior of the domain, V2u is discretized using the standard five-point
discrete Laplacian,

Uiy j = 2Ui_y, 5+ Ui, L Yt R L i
h? h? ’

(L‘T'U/)l'il/zyj =

and similarly for v. In the presence of physical boundaries, L*u is defined at all interior edges/faces
where u are defined, and LYv is defined at all interior edges/faces where v are defined. The finite-
difference stencils for tangential velocities next to no-slip and free-slip boundaries are modified to
account for the boundary conditions, as described in Ref. [40]. Note that for constant viscosity, if one
uses the Laplacian form of the viscous term, the different components of velocity are uncoupled.

When the viscosity is not a constant, the strain tensor form of the viscous term is needed. Note
that

T(u) =p[Vu+ (Vu)'] =p| a5, _|_‘LQ£ P
oy ox Oy X e

and therefore
(32) + 4 (w85 + 32) o

9

dx

9 dv 2] dv du
5 (w5s) + & (uds +0)

The discretization of V - 7(u) is constructed using standard centered second-order differences to give
the discrete viscous operator L. Note that even for constant viscosity, there is coupling between the
velocity components in (3.1). For the staggered discretization that we employ here, it can be shown
that for constant viscosity Lyu = pLw if Du = 0. That is, the solution of the Stokes system is
not affected by the choice of the form of the viscous term (this is to be contrasted with fractional
step methods, where the unprojected velocity and therefore the projected velocity is affected by the
choice). However, the Stokes solver is in general affected by the choice of the viscous term, even for
constant viscosity.

[Donev: For the sake of shortening the paper, I suggest we delete all of the stencils
(3.2)-(3.7) — they are easy to construct and also given elsewhere.| Explicitly, for the -
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component of momentum we discretize

(3:2) [2 (u@)} _ (82)ir1s — (uF2)iy
ox \" Oz T h
where . f}/\
du _ ) Uit Yo, j = WiV
(3.3) (lt@l‘)i,j = Hi,j < T ) o QA)\

we discretize ) /’V/”;)
9 ( Ou (8w gatn — ()i vy ﬁ?
(34) |:_ (H_)jl e dy /it i+ oy /it
i‘+1/21j

dy Jy h Q

where
(3 5) /1@ = iy, i41 Ui+l/2"j+1 — ui+1/2:j

| ay i+ Y2, g+ S h '
and we discretize
(3.6) @ o _ (F)irvairy, — (H52) i i

3 ay aZIJ i+1/2,j h
where
(3.7) /lf)_v = [bigy, i Vit1,i+Ye ~ Vijt'h

| LY T et h '

The discretization for the y-component of momentum is identical, and bulk viscosity can be includeg
straightforwardly. As described in Ref. [10], centered differences for the viscous fluxes that requir
values outside of the physical domain are replaced by one-sided differences that only use values from
the interior cell bordering the boundary and boundary values. The tangential momentum flux is set
to zero for any faces of the corresponding control volume that lie on a free-slip boundary, and values in
cells outside of the physical domain are never required. The overall discretization is spatially globally
second-order accurate.

We build the discrete velocity operator A = #p — L, from the above centered finite-difference
operators. We assume that the density p is specified at the cell centers. The density matrix p is
constructed by defining the discrete momentum density pu at the cell faces, where the corresponding
velocity components are defined. Here we follow Ref. [10] and average the density from cell centers
to cell faces,

Pij t Piv1,j Pijt+ pij+1
(pu)i,+1/g,j = (-J—2L—J> Uig Yy j and (p'u,),,-,‘j_i_l/2 = <_1_2_”.+_> Vi j Vo

giving a diagonal density matrix p with the interpolated face-centered densities along the diagonal.
We will assume here that the shear g and bulk viscosities v are specified at the cell centers; typically
they are an explicit function of other scalar variables such as density, temperature and composition.

he matrices g and + that appear in the approximation to the Schur complement [e.g. Eq. (2.7)]
are diagonal matrices containing the cell-centered values of the shear and bulk viscosities. The dis-
cretization of the viscous operator L, is defined by (3.2)-(3.7) and requires a shear viscosity at both
cell-centers and nodes. The value of i at a node is set to be the average of the four neighboring
cell-centered values [10].



